Unsupervised learning with mixed numeric and nominal data
نویسندگان
چکیده
منابع مشابه
Unsupervised Learning with Mixed Numeric and Nominal Data
ÐThis paper presents a Similarity-Based Agglomerative Clustering (SBAC) algorithm that works well for data with mixed numeric and nominal features. A similarity measure, proposed by Goodall for biological taxonomy [15], that gives greater weight to uncommon feature value matches in similarity computations and makes no assumptions of the underlying distributions of the feature values, is adopted...
متن کاملConceptual Clustering with Numeric-and-Nominal Mixed Data | A New Similarity Based System
This paper presents a new Similarity Based Agglomerative Clustering(SBAC) algorithm that works well for data with mixed numeric and nominal features. A similarity measure, proposed by Goodall for biological taxonomy[13], that gives greater weight to uncommon feature-value matches in similarity computations and makes no assumptions of the underlying distributions of the feature-values, is adopte...
متن کاملTransition Models for Analyzing Longitudinal Data with Bivariate Mixed Ordinal and Nominal Responses
In many longitudinal studies, nominal and ordinal mixed bivariate responses are measured. In these studies, the aim is to investigate the effects of explanatory variables on these time-related responses. A regression analysis for these types of data must allow for the correlation among responses during the time. To analyze such ordinal-nominal responses, using a proposed weighting approach, an ...
متن کاملClustering Large Data Sets with Mixed Numeric and Categorical Values
Efficient partitioning of large data sets into homogenous clusters is a fundamental problem in data mining. The standard hierarchical clustering methods provide no solution for this problem due to their computational inefficiency. The k-means based methods are promising for their efficiency in processing large data sets. However, their use is often limited to numeric data. In this paper we pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering
سال: 2002
ISSN: 1041-4347
DOI: 10.1109/tkde.2002.1019208